• Twitter
  • Facebook
  • Google+
  • Instagram
  • Youtube

Friday, 7 June 2013

Teori Dasar Limit | MatDas | SBMPTN

Teori Dasar Limit | MatDas | SBMPTN
Teori Dasar Limit | MatDas | SBMPTN


Hai teman-teman!
Kali ini saya akan membagikan teori dasar limit.
Langsung saja pada teorinya

Misalkan :
$n$ itu bilangan bulat positif
$k$ itu konstanta
$f$ dan $g$ adalah fungsi yang mempunyai limit di $c$
Sehingga


  1. $\lim_{x \to c} k = k$

  2. $\lim_{x \to c} x = c$

  3. $\lim_{x \to c} k f(x) = k \lim_{x \to c} f(x)$

  4. $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$

  5. $\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$

  6. $\lim_{x \to c} [f(x) . g(x)] = \lim_{x \to c} f(x) . \lim_{x \to c} g(x)$

  7. $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$ terjadi saat $\lim_{x \to c} g(x) \neq 0$

  8. $\lim_{x \to c} [f(x)]^{n} = \left(\lim_{x \to c} f(x)\right)^{n}$

  9. $\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}$, terjadi saat $\lim_{x \to c} f(x) > 0 $ketika$ n $bilangan genap



0 komentar:

Post a Comment

Hey, It's my pleasure to know what was in your mind after reading the article above. So, you can comment or give critics to my writing on this comment box below

Contact

Get in touch with me


Adress/Street

12 Street West Victoria 1234 Australia

Phone number

+(12) 3456 789

Website

www.johnsmith.com