Teori Dasar Limit | MatDas | SBMPTN |
Hai teman-teman!
Kali ini saya akan membagikan teori dasar limit.
Langsung saja pada teorinya
Misalkan :
$n$ itu bilangan bulat positif
$k$ itu konstanta
$f$ dan $g$ adalah fungsi yang mempunyai limit di $c$
Sehingga
- $\lim_{x \to c} k = k$
- $\lim_{x \to c} x = c$
- $\lim_{x \to c} k f(x) = k \lim_{x \to c} f(x)$
- $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$
- $\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$
- $\lim_{x \to c} [f(x) . g(x)] = \lim_{x \to c} f(x) . \lim_{x \to c} g(x)$
- $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$ terjadi saat $\lim_{x \to c} g(x) \neq 0$
- $\lim_{x \to c} [f(x)]^{n} = \left(\lim_{x \to c} f(x)\right)^{n}$
- $\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}$, terjadi saat $\lim_{x \to c} f(x) > 0 $ketika$ n $bilangan genap
0 komentar:
Post a Comment
Hey, It's my pleasure to know what was in your mind after reading the article above. So, you can comment or give critics to my writing on this comment box below